THANK YOU REV2024 SPONSORS!

PERFORMANCE CONTRACTING PANEL DISCUSSION

REV 2024 Conference

BIOMASS BOILER SYSTEMS

Mark Froling Froling Energy

Mechanical Contractor

Focused on the Installation of High Efficiency, Low Emissions Commercial Biomass Boiler Systems

Dry Wood Fuel Producer & Delivery Service

Of PDCs—Screened Dried Wood Chips 25% Moisture Content, Delivered by Blower Truck

For 15 years we have focused on Installing Wood Pellet & Chip Boiler Systems in Schools and other Commercial Buildings

3 Wood Fuels for Automated Heating Available in Vermont, NH, Maine and Massachusetts

Wood Pellets

Screened Dried Wood Chips

Green Wood Chips

Manufactured at 12 locations in New England

Froling Energy makes them. Others will in future.

Available from many local logging companies and regional distributors

Current Annual Heating Fuel Costs *Compare by Energy Unit (MMBTU)*

HEATING OIL	\$28/MMBTU at \$3.33/Gal
PELLETS	\$22/MMBTU at \$306/Ton
DRIED CHIPS	\$16/MMBTU at 165/ton
GREEN CHIPS	\$12/MMBTU at \$75/Ton

Wood Pellets

7% moisture content

Precisely controlled small size Flows like water.

Bole Wood-minimal bark

Most compact BTU storage

Assured Quality

Delivery by Blower Truck

Screened Dried Wood Chips

25% moisture content Screened: Nothing bigger than a matchbook

Bole Wood—minimal bark

Assured Quality

NOV NAME AND A DESCRIPTION OF A DESCRIPR **Delivery by Blower Truck**

Fuel Storage Options

Green Wood Chips

35% to 50% moisture content

Chip size and % bark vary. Rocks/debris possible

Quality is determined by price & Vendor (Buyer Beware!)

Delivery by Live Floor Truck into a Pit

Fuel Storage Options

Commercial Project: **Motivations**

Sustainability Goals

Reduce Heating Fuel Costs

Replace Aging Boilers & Leaky Oil Tanks

Desire to Support Region's Forest Economy

Improve Heat Distribution/Comfort

Central control system: None/Outdated

Additions & Renovations being Planned

Rural Choices: Oil, Propane or Wood?

Rutland Intermediate School

Dummerston School

Commercial Project: Common Traits

Big Buildings-30 to 100+ years old

Architecturally difficult for deep energy retrofits

Big Heating Fuel Users

Central Heat Distribution Systems

Well ventilated-or need to be!

Redundant Boilers

Require High Temperature Heat (160-190 F)

Steam Heat!

Academy School, Brattleboro

Bellows Falls Middle School

Commercial Project: Challenges

Small Boiler Room—no space!

Can a new boiler building be justified? Where might it be located?

Tight Access into Boiler Room for Big Boilers

No room for a Buffer Tank


Multiple chimney flues required

Can Silo be near enough to Boiler Room?

Multiple Boiler Rooms heat different areas

Can they be tied together?

Dummerston School

Stafford Tech in Rutland

Commercial Project: Funding

Two Major Methods:

Local Bond Issue

• Approved by public vote

Energy Performance Contractor

- Approved by public vote
- But with a much more attractive financial picture—Revenue Neutral

Mill River Union High School

FROLING ENERGY Plymouth Regional High School Plymouth, NH

FROLING ENERGY John Stark High School Weare, NH

- Averaged 38,000 Gal/Yr and \$133,000/Yr
- After Conversion with Froling & EEI
- Now Averaging 250 Ton/@ 165 \$41,250



Dry Chip Boiler Output: 1.7 Million BTU/Hr

Silo Capacity: 42 tons of PDCs = 3,900 Gal Oil

FROLING ENERGY Otter Valley Union High School Brandon, VT

Prior Fuel Use: 60,000gal/yr \$210,000yr Now,Pellet and Fuel Costs: \$140,000yr

FROLING ENERGY

Otter Valley Union High School Brandon, VT

Viessmann Pyrot 540 KW boiler has 1,843,000 BTU/hr peak output Features: Flue gas recirculation, Pneumatic tube cleaning

3 – 300 Gallon Buffer Tanks in Parallel

FROLING ENERGY St. Johnsbury School St. Johnsbury, VT

New brick boiler building matches school

Silo holds 42 tons of Dried Chips Equals 3,930 gal #2 Oil

Schmid UTSK 500 KW Boiler: 1.6 Million BTU/Hr

FROLING ENERGY Green Street School Brattleboro, VT

End of Life Oil Boiler Prior Fuel Use: 12,500 Gallons of Oil

Steam Heat Original Coal Boiler was still in place but disconnected

1924 Building 30,700 Sq Ft Area

FROLING ENERGY Green Street School Brattleboro, VT

New Fuel Use: 83 tons of Dried Wood Chips 4,000 Gallons of LP A 15% reduction in fuel use

Froling T4-150 Dried Chip/Pellet Boiler 512,000 BTU/Hr (Right: Gas Boiler & Buffer Tanks)

Interior Silo holds 12 tons of Dried wood chips

FROLING ENERGY Mill River Union High School North Clarendon, VT

Average Prior Heating Fuel Use: 47,000 Gallons of Oil per year at \$164,000

New Annual Fuel Use: 350 Tons of dried chips + 5,000G at \$75,275

FROLING ENERGY Mill River Union High School North Clarendon, VT

Dried Chip feed auger to boiler

FROLING ENERGY Mill River Union High School North Clarendon, VT

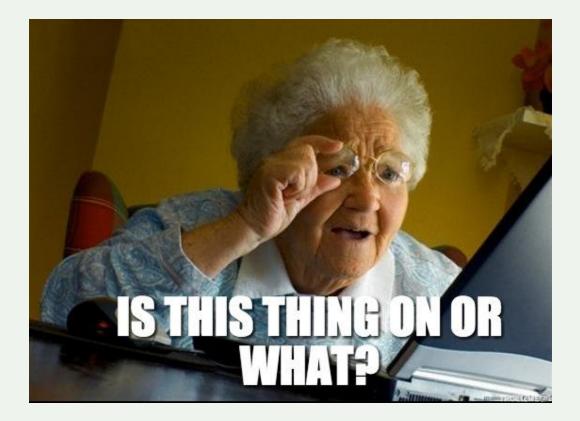
Augers feed dried chips from silo into the boiler

BUILDING AUTOMATION SYSTEMS

Chris Clorite Control Technologies Inc

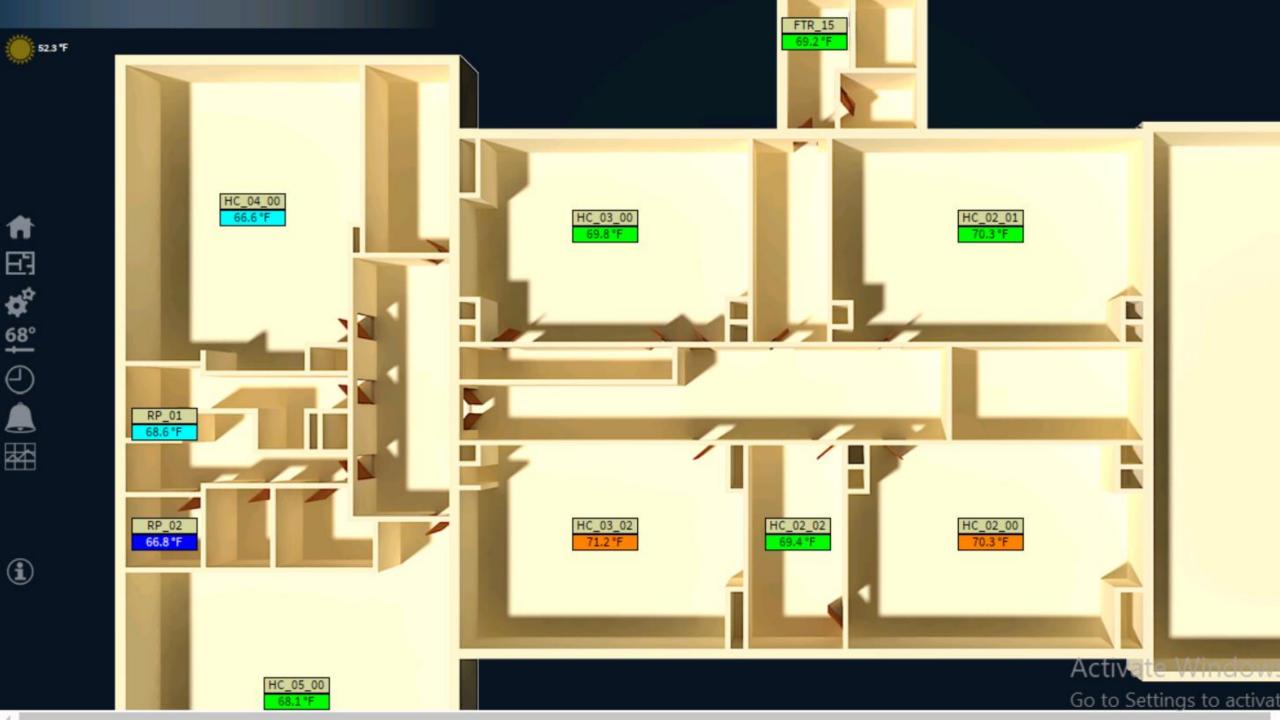
CHRIS CLORITE SALES ENGINEER

25 years HVAC experience from a service technician to working at an Engineering firm as a mechanical design engineer. Most of my career has been at Control Technologies Inc. where I have been a DDC Engineer, Project Manager, and


most recently Sales Associate

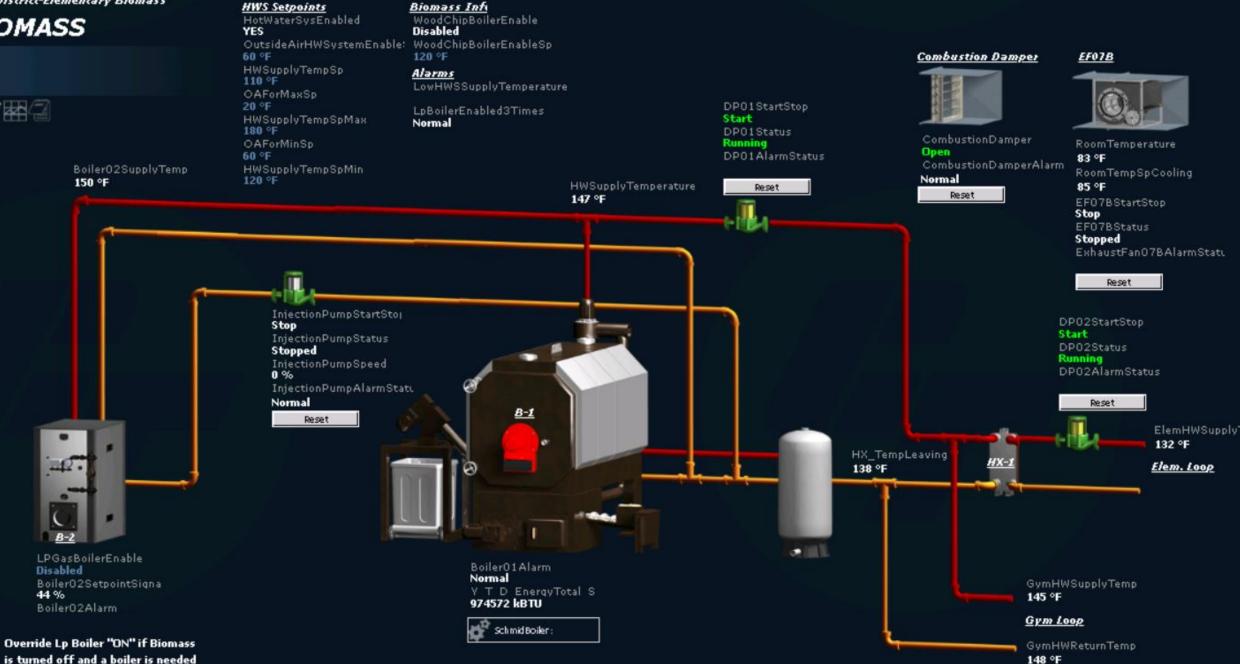
Building Automation Controls What do controls people really do?

Turn things on/off Move things back/forth

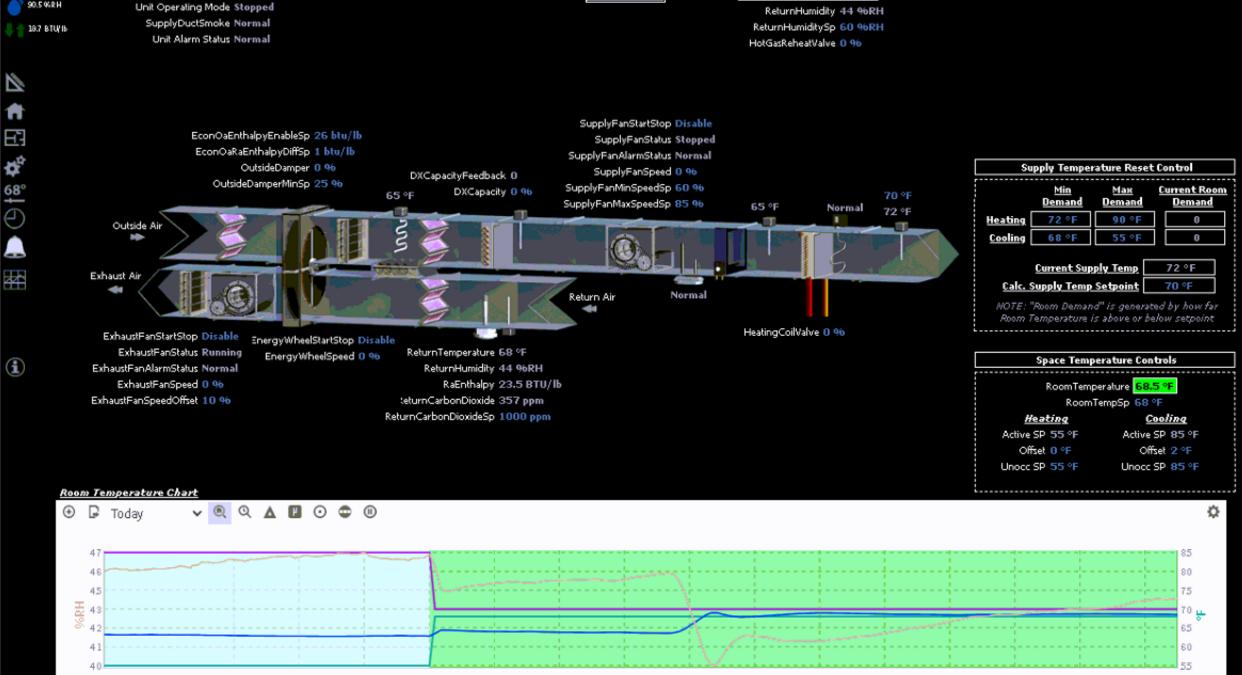

Based on information collected throughout the building

Simplifies operation of complex systems

The control system provides real time information



chool District-Elementary Biomass



is turned off and a boiler is needed

Activa

8 am

14-0ct-24 EDT

9 am

10 am

11 am

12 pm

1 pm

2 pm

3 pm

4 pm

Mon 14

1 am

2 am

3 am

4 am

5 am

6 am

7 am

Stage_Vest	131 Social Studies	65.5 °F	55 °F	70 °F	55 °F	0.96	Unoccupied	Unoccupied	NO
Stage_Storage	134 Social Studies	63.0 °F	55 °F	70 °F	55 °F	0.96	Unoccupied	Unoccupied	NO
Rm_A108	132 Social Studies	67.6 °F	65 °F	68 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
Rm_A109	134 Social Studies	69.2 °F	65 °F	68 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
Rm_A110	129 Social Studies	69.0 °F	65 °F	70 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
Rm_A111	conference room	68.9 °F	65 °F	68 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
Rm_A112	134 Social Studies	69.3 °F	65 °F	68 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
Rm_A113	Councillors office	70.1 °F	65 °F	68 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
Rm_A114	132 Social Studies	71.6 °F	65 °F	72 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
Rm_A115	134 Social Studies	68.7 °F	65 °F	72 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
Rm_A116	129 Social Studies	69.4 °F	65 °F	70 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
Rm_A117	131 Social Studies	68.7 °F	72 °F	70 °F	65 °F	0 %	Unoccupied	Unoccupied	YES
AdminNHall	131 Social Studies	66.7 °F	65 °F	75 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
AdminSHall	131 Social Studies	66.8 °F	65 °F	70 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
	_								
Rm_C110	Greenhouse	64.5 °F	55 °F	70 °F	55 °F	0.96	Unoccupied	Unoccupied	NO
Rm_C201	132 Social Studies	66.8 °F	65 °F	68 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
Rm_C202	132 Social Studies	68.4 °F	68 °F	72 °F	68 °F	0.96	Unoccupied	Unoccupied	YES
Rm_C203	134 Social Studies	70.2 °F	65 °F	70 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
Rm_C204	134 Social Studies	67.7 °F	65 °F	68 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
Rm_C205	134 Social Studies	67.2 °F	65 °F	68 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
Rm_C206	132 Social Studies	67.6 °F	65 °F	68 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
Rm_C207	132 Social Studies	67.2 °F	65 °F	68 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
Rm_C208	134 Social Studies	67.3 °F	65 °F	68 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
Rm_C210	132 Social Studies	68.0 °F	68 °F	68 °F	68 °F	0.96	Unoccupied	Unoccupied	YES
Rm_C213	134 Social Studies	67.7 °F	65 °F	68 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
Rm_C214	132 Social Studies	67.9 °F	65 °F	68 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
Rm_C215	134 Social Studies	69.1 °F	68 °F	70 °F	68 °F	0.96	Unoccupied	Unoccupied	YES
Rm_C218	132 Social Studies	69.7 °F	69 °F	72 °F	69 °F	100 %	Unoccupied	Unoccupied	YES
Rm_C219	134 Social Studies	67.8 °F	65 °F	68 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
Rm_C220	132 Social Studies	67.6 °F	65 °F	68 °F	65 °F	0.96	Unoccupied	Unoccupied	YES
C_Wing_Stairs	129 Social Studies	67.2 °F	65 °F	70 °F	65 °F	0.96	Unoccupied	Unoccupied	NO
A Méreo Dates	a war war sha han dha a	CE O OF	10 M 10 M 10 M	17 M. 1947	an ann an an	a second second		11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	10.10 ⁻⁰ 0

Ň

🍋 🕒 🛱 🗱 🖪 🔿

 (\mathbf{i})

Control Optimization

Demand Control Ventilation

Resets (OA and Building)

Schedule Zones

Load Shedding

ASHRAE Guideline 36 Trim and Respond

PERFORMANCE CONTRACTING & WOOD HEAT CASE STUDIES

Eric Lafayette

EEI

ERIC LAFAYETTE PROJECT DEVELOPER

- Project Developer
- Burlington, VT BHS Grad of 06'
- Roger Williams University in Rhode Island majoring in Construction Management
- Live in So. Burlington w/ wife & two girls
- VT School Construction Aid Task
 Force

Who is EEI?

- ESCO (Energy Service Company) that provides "turn-key" energy services typically through performance contracting
- Based in Merrimack, NH; office in Williston, VT
- We help schools, universities, hospitals, and municipalities meet their energy goals – Analysis to Completion
- We focus on efficiency & sustainability trying to utilize renewable energies

Currently working at Springfield School District, Hannaford Career Center, Missisquoi Salley Supervisory Union, Burlington City & Schools, Barre School District, Two River SU, White River SU, & Orleans

Why am I Here – Performance Contracting?

- Performance Contracting and its ability to address key infrastructure problems in the state affordably
- Delivery Methods for Schools & Municipalities
- Currently Plan & Spec. & Construction Manager where an Architect leads the project planning
- Owner hires Architect & Engineering firm and they start a long review of capital needs and potential options

Why Energy Performance Contracting?

- Delivery Method Focused on Results
- We Help Finance Reduced energy costs help to finance the project
 - Help customers attain grants & rebates State & Federal
 - Provide Investment Grade Audits to finance lower cost lease payments for energy efficiency
 - Provide lending opportunities to our clients through various means
- Numerous Options w/ Upfront Costs
 - We do not want to think "What if we had tried this"
- Maximize Rebates & Grants
 - Significant rebates from Efficiency Vermont
 - Utilize the Inflation Reduction Act (IRA) or other rebate
- No Risk or Cost to Schools Upfront if we can't come up w/ energy savings projects that the school accepts to, there is no charge for our services
- Continuous Commissioning
 - On going analytics have allowed for increases in savings over a period of time – continuously monitoring the system

Our Process

LONG TERM RELATIONSHIPS PARTNERS IN ENERGY

Identify Options

Identify building inefficiencies and provide "a-la-cart" energy cost measures that reduce building operating expenses (utility & operational)

Review

Review all options with the owner and align measures with the goals and objective of the owner – Steam Heating, Geothermal, Solar, CO2 Reduction, Renewable Energies

Review "magnitude of cost" for each measure and present potential energy savings & grant opportunities for each measure.

Design

Owner selects measures for development – EEI than engages the design team to put measures to paper. We then develop the final energy savings & guaranteed savings

Procurement

EEI reviews design, schedule, and updated pricing with the owner based on engineers design

EEI procures work by creating bid packages and putting the project out to bid

Site Management

EEI provides on site management constructs project with a team of subcontractors

Commissioning & Guaranteed Savings

EEI commissions the building and provides ongoing data analytics & measurement & verification

Options & analysis we provide

- What is the fuel source of the future?
- Oil, LP, Biomass, Geothermal, electric heat pump
- 2. Does the campus keep Steam or Convert to hot water?
- Maintaining a Steam system means standard efficient boilers and a commitment to fossil fuel or biomass
- Key infrastructure still needs upgrade but could reuse some boilers and building mechanical rooms
- Do they stay on oil or propane or move away from fossil fuels
- How far do we take the energy upgrades, and where does it go?
- Should we change the lights to LED?
- What additional code or capital needs do we need.
- Phased Approach

Franklin Elementary School, VT – 2022 - Oil to LP w/ Condensing Boilers

Case Study - Bethel Middle School Existing Situation

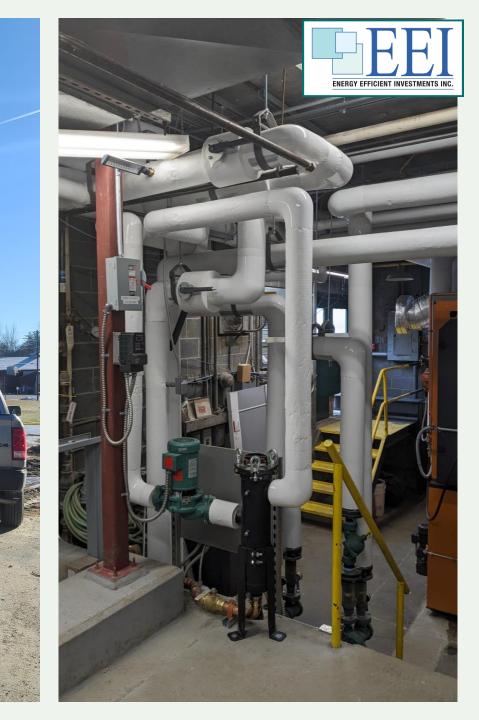
- Pneumatic Controls that were past end of life
- The steam traps had failed around the building and the owner group had a retiring maintenance staff
- Fluorescent Lighting
- Oil as primary heat source burning around 45,000 /gallons year

Combination of steam heat & hydronic heat Some of it was 70+ years old

Biomass Wood Chip Boiler

- ✓ Cheaper Fuel Source
- ✓ Reduction of CO2
- \checkmark 80% of cost stays within a 60-mile radius
- ✓ 40-year infrastructure investment
- ✓ Renewable energy source

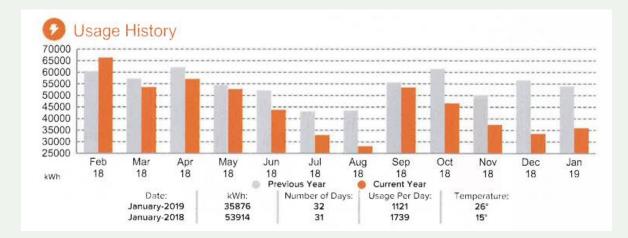
Challenges


- Decisions Dry Chip vs. Pellet
- Space issues & access
- ACT 250 Permitting
- Because the site had an active ACT 250 permit, this triggered a decision
- Multiple funding sources with strict guidelines for use & timelines
- Oil as primary heat source burning around 45,000 /gallons year

ECM Matrix - Bethel Campus

Measure	Description	Cost	Savings	Grants	Rebate
ECM 1	Remove Existing Underground Fuel Oil Tank	\$35,000			
ECM 2	Install Underground LP Tanks & Pipe to the Building (4 Underground - 1,000 Gallon Tanks)	\$50,000			
ECM 3	Add Wood Pellet Boiler w/ LP Backup	\$675,000	\$48,000		
ECM 4	Convert Steam to Hydronic	\$425,000		\$250,000	\$24,000
ECM 5	DDC Control System	\$245,000	\$4,200		
ECM 6	LED Lighting upgrade thoughout (fixture replacement)	\$240,000	\$12,000		\$65,000
ECM 7	Abestos Abatement (allowance)	\$50,000			
	Total	\$1,720,000	\$64,200	\$250,000	\$89,000
	Less Grants & Rebates	\$1,381,000			
	WRVSU ESSER Contribution	\$310,000			
	Bethel/Royalton Responsibility	\$1,071,000			
	15 Year Lease on LED Lighting & Pellet Boiler	\$920,000			
	WRVSD - Contribution	\$151,000			

Results


- In 2024 we used 9,000 gallons of Propane & 145 tons of wood chip
- Total Fuel Savings \$58,000 / Year
- Completed Wood Chip January 2024
- Utilized Propane for first part of heating season
- Electrical lighting savings slightly below projected due to new split system, heat pump hot water, heater
- All new Heating System no more service calls, DDC web based controls, & continuous commissioning looking for added savings this year

Case Study - Addison Northwest SU

In 2017, after a competitive selection process, EEI was selected to complete an energy audit

- Driver of the project was the failed steam and boiler system at VUHS.
- The project was completed in late 2018 and include
- Condensing gas boilers at VUHS and VES
- Solar Panels VUHS
- Several new ventilation units at all 4 Schools
- Fire Safety improvements ant VES
- LED Lighting at all Schools

THANK YOU

Eric Lafayette Project Developer / Manager elafayette@eeiservices.com

THANK YOU REV2024 SPONSORS!

